extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C2×He3) = C2×C92⋊C3 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 3 | C3^2.1(C2xHe3) | 486,85 |
C32.2(C2×He3) = C2×C92⋊2C3 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 3 | C3^2.2(C2xHe3) | 486,86 |
C32.3(C2×He3) = C2×C92.C3 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 3 | C3^2.3(C2xHe3) | 486,87 |
C32.4(C2×He3) = C2×C32.He3 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.4(C2xHe3) | 486,88 |
C32.5(C2×He3) = C2×C32.5He3 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.5(C2xHe3) | 486,89 |
C32.6(C2×He3) = C2×C32.6He3 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.6(C2xHe3) | 486,90 |
C32.7(C2×He3) = C2×C34.C3 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | | C3^2.7(C2xHe3) | 486,197 |
C32.8(C2×He3) = C2×C32.23C33 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 162 | | C3^2.8(C2xHe3) | 486,199 |
C32.9(C2×He3) = C2×C33⋊C32 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.9(C2xHe3) | 486,215 |
C32.10(C2×He3) = C2×He3.C32 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.10(C2xHe3) | 486,216 |
C32.11(C2×He3) = C2×He3⋊C32 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.11(C2xHe3) | 486,217 |
C32.12(C2×He3) = C2×C32.C33 | φ: C2×He3/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.12(C2xHe3) | 486,218 |
C32.13(C2×He3) = S3×C32⋊C9 | φ: C2×He3/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.13(C2xHe3) | 486,95 |
C32.14(C2×He3) = S3×C3≀C3 | φ: C2×He3/He3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.14(C2xHe3) | 486,117 |
C32.15(C2×He3) = S3×He3.C3 | φ: C2×He3/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.15(C2xHe3) | 486,120 |
C32.16(C2×He3) = S3×He3⋊C3 | φ: C2×He3/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.16(C2xHe3) | 486,123 |
C32.17(C2×He3) = S3×C3.He3 | φ: C2×He3/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.17(C2xHe3) | 486,124 |
C32.18(C2×He3) = C2×C3.C92 | central extension (φ=1) | 486 | | C3^2.18(C2xHe3) | 486,62 |
C32.19(C2×He3) = C2×C33⋊C9 | central extension (φ=1) | 54 | | C3^2.19(C2xHe3) | 486,73 |
C32.20(C2×He3) = C2×C32.19He3 | central extension (φ=1) | 162 | | C3^2.20(C2xHe3) | 486,74 |
C32.21(C2×He3) = C2×C32.20He3 | central extension (φ=1) | 162 | | C3^2.21(C2xHe3) | 486,75 |
C32.22(C2×He3) = C2×He3⋊C9 | central extension (φ=1) | 162 | | C3^2.22(C2xHe3) | 486,77 |
C32.23(C2×He3) = C2×3- 1+2⋊C9 | central extension (φ=1) | 162 | | C3^2.23(C2xHe3) | 486,78 |
C32.24(C2×He3) = C6×C32⋊C9 | central extension (φ=1) | 162 | | C3^2.24(C2xHe3) | 486,191 |
C32.25(C2×He3) = C6×C3≀C3 | central extension (φ=1) | 54 | | C3^2.25(C2xHe3) | 486,210 |
C32.26(C2×He3) = C6×He3.C3 | central extension (φ=1) | 162 | | C3^2.26(C2xHe3) | 486,211 |
C32.27(C2×He3) = C6×He3⋊C3 | central extension (φ=1) | 162 | | C3^2.27(C2xHe3) | 486,212 |
C32.28(C2×He3) = C6×C3.He3 | central extension (φ=1) | 162 | | C3^2.28(C2xHe3) | 486,213 |
C32.29(C2×He3) = C2×C32.24He3 | central stem extension (φ=1) | 162 | | C3^2.29(C2xHe3) | 486,63 |
C32.30(C2×He3) = C2×C33.C32 | central stem extension (φ=1) | 162 | | C3^2.30(C2xHe3) | 486,64 |
C32.31(C2×He3) = C2×C33.3C32 | central stem extension (φ=1) | 162 | | C3^2.31(C2xHe3) | 486,65 |
C32.32(C2×He3) = C2×C32.27He3 | central stem extension (φ=1) | 162 | | C3^2.32(C2xHe3) | 486,66 |
C32.33(C2×He3) = C2×C32.28He3 | central stem extension (φ=1) | 162 | | C3^2.33(C2xHe3) | 486,67 |
C32.34(C2×He3) = C2×C32.29He3 | central stem extension (φ=1) | 162 | | C3^2.34(C2xHe3) | 486,68 |
C32.35(C2×He3) = C2×C33.7C32 | central stem extension (φ=1) | 162 | | C3^2.35(C2xHe3) | 486,69 |